

WE THINK INNOVATION

Crystic[®] Gelcoat Range

Gellint	2
Gelcoats At a Glance	3 - 8
Crystic® Superior Weathering Gelcoat Range	9 - 10
Crystic® Permabright	11 - 12
Crystic® LS30PA Iso-NPG Spray Gelcoat	13 - 14
Crystic® LS31PA Iso-NPG Brush Gelcoat	15 - 16
Crystic® LS88PA Brush Gelcoat	17 - 18
Crystic® LS97PA Spray Gelcoat	19 - 20
Epoxy Bonding Polyester Gelcoats	21 - 23
Crystic® Fireguard Range	24 - 26
Crystic® Gelcoat 967SMK Excel	27 - 28
Crystic® Ecogel	29 - 31
Crystic® Crestacoat 5000PA	32 - 34

OUR ADVANCED GELCOATS, YOUR EXACT COLOUR

Rapid Colour

GelTint is one of the latest innovations from Scott Bader and means that all of our advanced, high quality gelcoats can now be supplied in ANY colour. The GelTint service offers the latest in pigment and gelcoat technology, combined with advanced dispersion equipment guaranteeing the renowned Scott Bader quality for ease of use, finish and longevity, already associated with its gelcoats.

FAST

GelTint colour matching service is fast, typically taking 24 hours from order.

PRECISE

RAL colour codes are matched and reproduced with extremely high accuracy.

RESILIENT

Brilliant long-term colour and gloss retention as well as strong durability.

GelTint is the modern way to order and use Scott Bader's gelcoats. Try something new...

Visit **www.GelTint.com** or call our Technical Support Team on **+44 (0)1933 663100**

ISO BRUSH GELCOATS	DESCRIPTION	APPLICATION
65PA	General purpose gelcoat with good water resistance	Marine – hulls, decks and components, building, transport or any general industrial application
64PA	Low viscosity brush gelcoat	Marine - hulls, decks and components, building, transport or any general industrial application
65E	Isophthalic gelcoat with excellent water and weather resistance	Marine and transport industries
LS 88PA	Low styrene content superior weathering gelcoat with excellent water resistance	Marine – hulls, decks and components or other building/transport or industrial applications requiring excellent colour stability and gloss retention when exposed to sunlight
33PA	Flexible gelcoat with good impact resistance	Marine – decks and components, building, transport or any general industrial application
80PA	Pre accelerated gelcoat designed for hand lay up	All general moulding and applications for brush yielding good coverage and flow levelling properties
69PA	Chemical resistant gelcoat	Sanitaryware applications - sinks, shower trays, baths, vanity units
ISO SPRAY GELCOATS		
ECOGEL S1PA	Market leading technology spray gelcoat with only 16% styrene content which may cut styrene emissions by over 50%	Building, Land Transport, Wind Energy, Industrial
LS 97PA	Low styrene content superior weathering gelcoat with excellent water resistance	Marine – hulls, decks and components or other applications requiring excellent colour stability and gloss retention when exposed to sunlight
LS 96PA	Low styrene content filled gelcoat with good handling properties	Building, transport or any general industrial application
0209SMK	Low styrene content, robust spray gelcoat with excellent handling properties	Building, transport or any general industrial application
81PA	General purpose spray gelcoat	All general moulding applications
90PA	Pre-accelerated gelcoat with excellent water and weather resistance	Industrial and general purpose

	-		GUI (BY)	gaine i	Barcol Hat	water his	Sarkion his	ڔۣڿ	Telefil Mrs.	dink de s	In the string	ane Collect Reproduct	,	Wallacine
Brien	hirless	Graine	Viscos.	Colim	Batcol	Water	HITE	Tensile	Tensile	Florida	lan st.	Replace .	, Indiana	Marin
•			Thix	9	42	18	75	75	3.5	3.0		Lloyd's		
•			Thix	8	44	17	65	61	3.1	2.7			四命还↓	
•			100	10 - 15	40	23	75	75	3.5	3		Lloyds	# ¢	SBME
•			Thix	8	50	17	70	60	3.9	2.8	YES	Lloyd's		
•			Thix	10	33	26	55	66	3.3	4.9		Lloyd's	四命还华	
-				20	40		75	65	3.5	2			四角小	SBME
•			Thix	9	49	16	96	57	3.8	1.6		Lloyd's	€.	
	-		Thix	18	40	18	95	48	4.0	2.4	YES	Lloyd's	四命十四	
	•		Thix	7	47	17	68	51	3.8	2.8	YES	Lloyd's		
	-		Thix	7	45	16	70	59	5.0	2.1	YES		严命 [
	-	•	Thix	9	35	18	75	68	4.1	2.8	YES		四命十四	••
				20	40		75	65	3.5	2			1	SBME
				8	40	18	73	66	3.4	2.5			<u>[</u> [m	SBPty

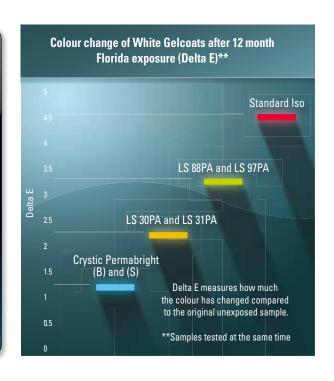
ISO NPG BRUSH GELCOATS	DESCRIPTION	APPLICATION
PERMABRIGHT (B)	Unique brush gelcoat technology with exceptional colour stability and water resistance	Marine - hulls, decks and components or other applications requiring excellent colour stability and gloss retention when exposed to sunlight
LS 31PA	Superior Weathering Iso/NPG Brush Gelcoat	Marine - hulls, decks and components or other applications requiring excellent colour stability and gloss retention when exposed to sunlight
69 PA	Chemical resistant gelcoat	Sanitaryware applications - sinks, shower trays, baths, vanity units
32PA	Chemical resistant gelcoat with very low porosity	Sanitaryware applications - sinks, shower trays, baths and general applications requiring low porosity
2208NPG	Chemical resistance gelcoat	Sanitaryware applications - sinks, shower trays, baths requiring good chemical resistance
ISO NPG SPRAY GELCOAT	s	
84PA	Isophthalic gelcoat with excellent water and weather resistance	Marine and transport industries
PERMABRIGHT (S)	Unique spray gelcoat technology with exceptional colour stability and water resistance	Marine - hulls, decks and components or other applications requiring excellent colour stability and gloss retention when exposed to sunlight
LS 30PA	Superior Weathering Iso/NPG Spray Gelcoat	Marine – hulls, decks and components or other applications requiring excellent colour stability and gloss retention when exposed to sunlight. Can also be used for shower trays
92PA	Water and chemical resistant spray gelcoat	Chemical process plant fabricators and sanitaryware applications - sinks, shower trays, baths
967SMK EXCEL	Chemical resistant gelcoat with exceptional thermal shock resistance	All sanitaryware applications - sinks, shower trays, baths and vanity units
ECOGEL MARINE S3PA	Market leading technology spray gelcoat with only 23% styrene content which may cut styrene emissions by over 50%	Marine – hulls, decks and components or other applications requiring excellent colour stability and gloss retention when exposed to sunlight
FIRE RETARDANT BRUSH	GELCOATS	
73PA	Halogen free fire retardant brush gelcoat which meets BS476 part 7 class 2 with 2.3700PA	Applications requiring a fire retardant brush gelcoat
75PA Excel (B)	Unique, intumescent fire retardant coating which when applied to the reverse side of any laminate will meet M1 and BS476 part 7	Applications where parts may be accidentally exposed to direct flames which includes engine rooms in boats and under the bonnet in buses or other vehicles
75PA (IMB) Excel	Intumescent fire retardant gelcoat for brush application	Marine, building and transport industries
FIRE RETARDANT SPRAY	GELCOATS	
70PA	Halogen free fire retardant spray gelcoat which meets EN45545 HL2 with Crestapol 1212	Applications requiring a fire retardant spray gelcoat
72PA	Halogen free fire retardant spray gelcoat which meets BS476 Part 7 class 1 with 1355PA and M1 with Crestapol 1212 and M2/F2 with Crystic 26026	Applications requiring a fire retardant spray gelcoat
76PA FR	Low smoke, Isophthalic fire retardant gelcoat	Building & Industrial
75PA Excel (S)	Unique, intumescent fire retardant coating which when applied to the reverse side of any laminate will meet M1 and BS476 part 7	Applications where parts may be accidentally exposed to direct flames which includes engine rooms in boats and under the bonnet in buses or other vehicles
75PA (IMS) Excel	Intumescent fire retardant gelcoat for spray application	Marine, building and transport industries
SANDABLE GELCOATS		
42PA	Sandable gelcoat for easy and precise abrasion	Transport market or any parts that need to be post-painted
43PA	Very low viscosity sandable gelcoat, extremely easy to sand	For complicated shapes that will be post-painted, eg mannequins
3.7020PA	Sandable spray gelcoat, for easy and precise abrasion	Transport market or any parts that need to be post-painted
44PA	Sandable spray gelcoat	Transport market

				iis [®]	.s.,	ne ⁵⁵	diot his		ngit MP 8	diff GP 8	J. Break	Content		,s
Brieff	Airless	Graity	Jis Costy	Goliffe fi	he Bacal Had	Material	sopion pol ^s c	Letisile St	endings he	i ingitalia	ableaton Sursur	pe content bandants	Hillisty	Manufactured
•			Thix	8	46	9.4	53	58	3.4	3.3	YES	Lloyd's	↓ (A) 四 合 ¥ 四	
•			Thix	8	41	10	65	57	3.4	2.8	YES	Lloyd's	1 6 <u>2</u> 6 4 2	
			Thix	9	49	16	96	57	3.8	1.6		Lloyd's	€	
•			Thix	10	46	17	83	64	3.8	2.0			&	
•			Thix	10	40	17	98	50	2.1	2.2			(Ch	•
	•		50	20	44	23	80	75	3.5	2.5		Lloyds	四章	SBME
	•		Thix	8	48	6.3	68	61	3.8	2.7	YES	Lloyd's	1 1 M 6 1 M	
	•		Thix	9	46	10	62	52	3.4	2.8	YES	Lloyd's	1 10 M 6 2 M	
			Thix	6	47	16.4	94	54.5	3.7	1.6			€	
	•		Thix	9	45	-	90	70	3.4	3.0			(**)	
	•		Thix	11	40	-	56	68	3.1	4	YES	Lloyd's	¢	
•			Thix	10	42	-	62	59	4.1	2.2		BS 476	严命 严	
•			Thix	10	40	Nor	mechanica	l data. Not a	ipplicable f	or this prod	luct	BS 476	四命↓四	
•			Thix	10	40			No mechai	nical data.			BS 476	四命↓	
	-		Thix	12	46	-	77	56	4.7	2.6		EN 45545	严命 严	
	•		Thix	12	47	-	68	64	4.2	2.0		BS 476	四角凹	
	•		50	20	46	18	75	59	3.8	2.3			⋒	SBME
	•		Thix	10	40			No mechai	nical data.			BS 476	四命↓四	
	•		Thix	10	40			No mechai	nical data.				四命↓	
•			Thix	10	37	20	54	46	3.7	2.1			四命四	
-			Thix	12	30	20	52	41	2.6	2.4			# 6 E	
			Thix	16	40	-	67	45	1.5	3.2			严命 严	•
			Thix	6	38	16	70	46	5.2	1.2			,	

TOOLING GELCOATS	DESCRIPTION	APPLICATION
11PA (S)	Iso/NPG tooling gelcoat with good heat and chemical resistance	General tooling applications
11PA (B)	Iso/NPG tooling gelcoat with good heat and chemical resistance	General tooling applications
12PA	Iso/NPG tooling gelcoat with good heat and chemical resistance	General tooling applications
14PA	Superior performance modified vinylester brush tooling gelcoat for making moulds designed to have a long service lifetime and retain high gloss levels after multiple pulls	All tooling applications particularly to eliminate problems of water marking
15PA (S)	Superior performance vinylester spray tooling gelcoat for making moulds designed to have a long service lifetime and retain high gloss levels after multiple pulls	All tooling applications
15PA (B)	Superior performance vinylester brush tooling gelcoat for making moulds designed to have a long service lifetime and retain high gloss levels after multiple pulls	All tooling applications particularly to eliminate problems of water marking
SPECIAL PURPOSE G	ELCOATS	
MOULDGUARD (B)	Unique, extremely flexible protection coating for moulds or final parts	For protecting moulds when they are not in use in production or for protecting parts in transit
MOULDGUARD (S)	Unique, extremely flexible protection coating for moulds or final parts	For protecting moulds when they are not in use in production or for protecting parts in transit
95PA	Clear chemical resistant gelcoat with excellent clarity for use with polystone chips to give granite / stone effects	Worktops or applications where a solid surface appearance is required which do not require a high level of thermal shock
997SMK	Water clear chemical resistant gelcoat. Can be used with polystone chips for a granite effect. Excellent thermal shock resistance	All Sanitaryware applications which require a clear resin for a marble or granite effect application
976SMK	Chemical resistant gelcoat	Swimming Pool applications
251PA	Very low styrene gelcoat for use with epoxy laminating and infusion systems	Marine - decks and components, or wind energy applications
252PA	Gelcoat for use with epoxy laminating and infusion systems	Marine – decks and components, or wind energy applications
253PA	Gelcoat for use with epoxy laminating and infusion systems	Marine - decks and components, or wind energy applications
255PA	Gelcoat for use with epoxy laminating and infusion systems where fire retardant properties are required	Marine - decks and components and building and construction applicatons
BARRIERCOATS		
CRESTACOAT 5000PA	The ultimate barriercoat for improving surface aesthetics based on unique chemistry. Applied behind a gelcoat it is especially good behind dark colours, in complex shapes and in infusion processes as good aesthetics	Marine – hulls, decks and components and any other application which requires good aesthetics e.g. moulds
BC 550PA	Polyester barriercoat for applying behind a gelcoat to reduce print through and achieve a superior surface finish	Marine – decks and components – and any other application which requires good aesthetics and will not be submerged in water for long periods of time
TOPCOATS		
47PA	Orthophthalic topcoat which cures tack-free	Applications requiring a smooth finish on the reverse side of a laminate
49PA EXCEL	Non-slip topcoat which cures tack-free	Applications requiring a non-slip finish on the reverse side of a laminate
65PAX	Isophthalic topcoat which cures tack-free	Applications requiring a smooth finish on the reverse side of a laminate and good long-term performance
LS97PAX	Isophthalic topcoat which cures tack-free	Applications requiring a smooth finish on the reverse side of a laminate and good long-term performance

29	్ట్రక్	Grain Grant	A Pritse Gettine	Bacol Had	iness er h	partial partia partial partial partial partial partial partial partial partial	cilest	Torsie Me	Hillie Co. Chaigi	a Break Shirt	RECORDER TO SERVICE OF	undert ⁱ	Manifectue
Brieff	ķirt ^u	Grat Med Thix	10	40	- Hat	98	Leit ²	48 12	2.2	Tar	Phy.		Mar.
•	•	Thix	10	40	-	98	50	2.1	2.2				•
•		Thix	9	46	17	83	64	3.8	2.0			上付@ 图 (1)	
•		Thix	14	40	18	100	78	3.0	3.5			十十億 第四分	
	•	Thix	10	44	18	118	61	3.9	2.0			子 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	
•		Thix	10	45	18	106	78	3.9	2.7			是	
•		Thix	15		No mech	anical data	Not applic	able for thi	s product				
	•	Thix	12		No mech	anical data	Not applic	able for thi	s product				
	-	Thix	9	44	24	100	60	3.0	2.2			心 型	
	•	Thix	9	45	-	90	70	3.4	3.0				•
	-	Thix	9	45	-	90	70	3.4	3.0			*	
•		Thix	10	44	17	68	66	4.0	2.1	YES		十章	
•		Thix	9	51	18	71	65	4.3	2.2			小 章	
	-	Thix	10	42	18	76	67	3.9	2.2			十章	
•		Thix	8	52	-	78	57	5.4	1.7			命ţ	
•		Thix	25	70	-	58	17	1.1	3.5		Lloyd's	四命↓四	
•		Thix	9	49	13	59	47	4.6	1.5			四命↓竺	
•		Thix	10	58	13	73	35	7.7	0.4				
•		Thix	10			l data. Not a							
•		Thix	9	42	18	75	75	3.5	3.0				
	•	Thix	7	47	17	68	51	3.8	2.0	YES	Lloyd's		

Crystic[®] Superior Weathering Gelcoat Range



Scott Bader has led innovation in superior weathering gelcoat technology for over 50 years

Crystic Permabright - 2 times better colour stability than next best in class Iso/NPG* - 4 times better colour stability than a standard Isophthalic Gelcoat*

A dE of 1.0 is the smallest colour difference the human eye can see, so after 12 months in intense sunlight in Florida, the colour change of Crystic Permabright is difficult to detect.

This means, products manufactured using Crystic Permabright Gelcoat can maintain their show room look and condition for longer.

Crystic Permabright (B)	D-lso/NPG polyester brush gelcoat with outstanding weathering performance
Crystic Permabright (S)	D-lso/NPG polyester spray gelcoat with outstanding weathering performance
Crystic LS 31PA	Thixotropic Iso/NPG brush gelcoat with good weathering performance
Crystic LS 30PA	Thixotropic Iso/NPG spray gelcoat with good weathering performance
Crystic LS 88PA	Thixotropic Isophthalic brush gelcoat with good weathering performance
Crystic LS 97PA	Thixotropic Isophthalic spray gelcoat with good weathering performance

Key benefits of the Crystic Superior Weathering Range:

- Market leading weathering performance
- Low styrene content
- Exceptional handling
- Low porosity finish
- D-Iso/NPG polymer technology of Crystic Permabright designed to combat colour change
- Low water absorption
- Easy to repair

Liquid Properties

Product	Description	Viscosity at 0.6 s- ¹	Viscosity at 4500 s- ¹	Specific Gravity at 25°C	Stability at 20°C	Geltime 25°C 2% Butanox M50 (or other equivalent catalyst)
Crystic Permabright (B)	D-Iso/NPG polyester brush gelcoat	350 - 450 poise	12 - 18 poise	1.2	3 months	6 - 10 minutes
Crystic Permabright (S)	D-Iso/NPG polyester spray gelcoat	230 - 280 poise	2.3 - 2.5 poise	1.2	3 months	6 - 10 minutes
Crystic LS 31PA	Iso/NPG brush gelcoat	350 - 450 poise	12 - 18 poise	1.1	3 months	6 - 10 minutes
Crystic LS 30PA	Iso/NPG spray gelcoat	230 -280 poise	2.3 - 2.5 poise	1.2	3 months	7 - 10 minutes
Crystic LS 88PA	Isophthalic brush gelcoat	400 - 470 poise	10 - 14 poise	1.2	3 months	7 - 12 minutes
Crystic LS 97PA	Isophthalic spray gelcoat	230 - 300 poise	2.3 - 2.5 poise	1.2	3 months	6 - 9 minutes

Mechanical Properties

Product	Description	Barcol Hardness	Heat Deflection Temperature	Water Absorption 24 hours at 23°C	Tensile Strength	Elongation at Break	Flexural Strength
Crystic Permabright (B)	D-Iso/NPG polyester brush gelcoat	46	53°C	9 mg	58 MPa	3.3%	103 MPa
Crystic Permabright (S)	D-Iso/NPG polyester spray gelcoat	48	68°C	6 mg	61 MPa	2.7%	97 MPa
Crystic LS 31PA	Iso/NPG brush gelcoat	41	65°C	10 mg	57 MPa	2.1%	106 MPa
Crystic LS 30PA	Iso/NPG spray gelcoat	46	62°C	10 mg	52 MPa	2.8%	88 MPa
Crystic LS 88PA	Isophthalic brush gelcoat	50	70°C	17 mg	60 MPa	2.3%	100 MPa
Crystic LS 97PA	Isophthalic spray gelcoat	36	63°C	17 mg	74 MPa	4.7%	89 MPa

Markets

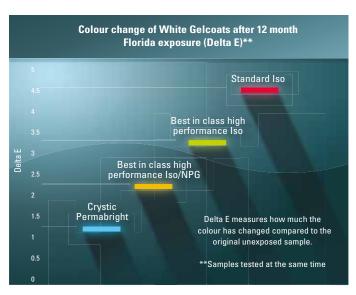
- Marine
- Building
- Transport
- Industrial
- Applications where exterior durability is critical

Crystic[®] Permabright High Performance D-Iso/NPG Polyester Gelcoat

Advanced polymer technology gelcoat with exceptional colour stability, available for both brush and spray application.

Crystic Permabright - 2 times better colour stability than next best in class Iso/NPG* - 4 times better colour stability than a standard Isophthalic Gelcoat*

A dE of 1.0 is the smallest colour difference the human eye can see, so after 12 months in intense sunlight in Florida, the colour change of Crystic Permabright is difficult to detect. This means, products manufactured using Crystic Permabright Gelcoat can maintain their show room look and condition for longer.


Crystic Permabright Technology

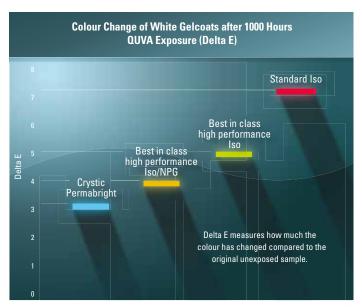
Polyester Gelcoats will change colour when exposed to UV and this process is accelerated in hotter climates such as Florida. White and off-white gelcoats will turn yellow which is not aesthetically pleasing. So, in 2006 Scott Bader initiated a strategic gelcoat development project at its global R&D facility located in its Wollaston manufacturing site in the UK. The business identified the need for a superior gelcoat that could withstand harmful UV environmental conditions while delivering vastly improved gloss retention and colour stability results. The project's goal was to design a new gelcoat that would meet these needs leading to a step change in market performance. To achieve this objective the Scott Bader team of chemists utilised more than 50 years of experience producing world class unsaturated polyester gelcoats to introduce a new D-Iso/NPG polymer base specifically designed to combat colour change. The excellent gloss retention and colour preservation results from QUV & Xenon testing and 12 months of Florida exposure proves Crystic Permabright is one of the most significant developments the composites industry has seen for many years.

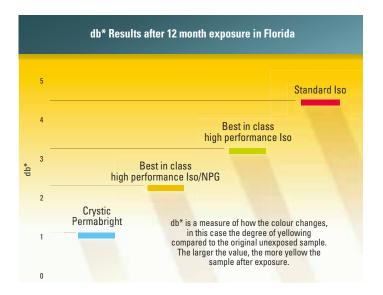
Technical Benefits of Crystic Permabright

- D-Iso/NPG polymer technology designed to combat colour change
- Excellent weathering performance measured by very low colour change and high gloss retention
- Can be used under the water line as the water uptake is very low and has high resistance to osmotic blistering when used as part of a marine grade system proven in a rigorous 12 month test
- Handling is comparable to an Iso/NPG based gelcoat with similar back up times
- The gelcoat base resin uses novel unsaturated polyester technology unique to Scott Bader
- Easy to repair
- Low porosity finish
- Low styrene content
- Available in white, off-white and light cream shades

^{*}Calculated using dE values from a 12 month Florida weathering test

Facts About Marine Gelcoats


Gelcoats used for the marine industry have to be durable and resist the effects of sunlight and moisture. Sunlight and harmful ultraviolet (UV) radiation have a destructive effect on unsaturated polyester resins leading to loss of gloss and colour change. Moisture penetration into the gelcoat is just as harmful with blistering and delamination from the glass reinforced unsaturated polyester composite. Over the years incremental improvements to the UV resistance has been made but gelcoats currently on the market still exhibit noticeable colour change when exposed to sunlight. Crystic Permabright has been developed to show very little colour change over time and is indeed a step-change technology for the industry.


PANELS IN FLORIDA - Extreme natural exposure conditions accelerate product weathering, two to three times faster than normal locations.

Circular gelcoat panels used for 12 month blistering test in de-ionised water.

This is an accelerated weathering test which can be used as an indication of performance.

Properties	Typical Result Brush	Typical Result Spray
Viscosity, 25°C 0.6s ⁻¹	350 – 450 poise	230 - 280 poise
Viscosity, 25°C 4500s-1	12 – 18 poise	2.3 - 2.5 poise
Specific Gravity at 25°C	1.2	1.2
Stability at 20°C	3 months	3 months
Geltime 25°C 2% Butanox M50 (or other equivalent catalyst)	6 – 10 minutes	6 – 10 minutes

Mechanical Properties	Method	Typical Value Brush	Typical Value Spray
Barcol Hardness (Model 934-1)	EN 59	46	48
Heat Deflection Temperature	BS EN ISO 75-2 (1996)	53°C	68°C
Water Absorption 24 hours at 23°C	BS EN ISO 62 part 6.2	9.4 mg	6.3 mg
Tensile Strength	BS EN ISO 527- 2	58 MPa	61 MPa
Elongation at Break	BS EN ISO 527- 2	3.3 %	2.7 %
Flexural Strength	BS EN ISO 178	103 MPa	97 MPa
Flexural Modulus	BS EN ISO 178	2980 MPa	3490 MPa

Crystic[®] LS30PA Spray Gelcoat

Thixotropic Iso/NPG spray gelcoat with exceptional long-term performance to suit demanding external applications in marine, building, transport and industrial markets.

Use it with the knowledge that it comes with the proven quality guarantees associated with Scott Bader and has been particularly designed for use where exterior durability is critical.

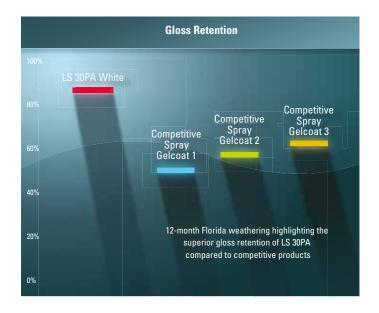
Key Benefits

- Excellent weathering performance both accelerated weathering and 12-month Florida exposure reveal negligible colour change and excellent gloss retention.
- Exceptional handling easy to spray
- Sag Resistant sprayed films resist sagging and slumping
- Low porosity finish achieved due to minimal air entrapment and good air release
- Lloyds approved
- Proven osmotic blistering resistance in a rigorous 12-month test.
- Low styrene content

Markets

- Marine
- Land Transport
- Building
- Industrial
- Shower trays
- Applications where exterior durability is critical

Scott Bader's rigorous development programme ensures that all new gelcoats are tested under the most extreme conditions, including 12 months south facing exposure in Florida. Under these intense conditions, Crystic LS 30PA displays excellent weathering characteristics, making it an ideal choice for demanding exterior applications.


Specially designed test panels at the Atlas Weathering Services Group site in Florida, U.S.A.



Extreme natural exposure conditions accelerate product weathering, two to three times faster than normal locations.

Physical Data for Crystic LS 30PA in liquid state					
Property Unit LS 30PA					
Viscosity @ 4500 s-1	poise	2.4			
Viscosity @ 0.6 s-1	poise	250			
Specific Gravity	-	1.2			
Geltime (@ 25°C, 2% Butanox M50®)	minutes	5			
Flash Point	°C	26			

[®] Registered trademark of Akzo Nobel

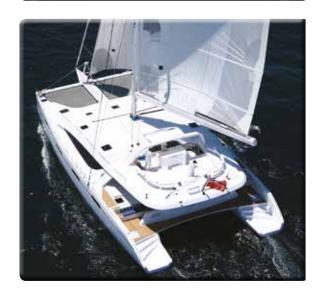
Mechanical Data						
Property	Unit	LS 30PA gelcoat				
Tensile Elongation	%	2.8				
Tensile Strength	MPa	52				
Flexural Modulus	MPa	3045				
Barcol Hardness	-	47				
Water Absorption, 4 weeks @ 23°C	mg	64.7				
Heat Deflection Temperature (1.80 MPa)	°C	62				

Pack Sizes: Available in 25kg kegs and 225kg drums

Crystic® Gelcoat LS31PA Iso-NPG Brush Gelcoat

Scott Bader has spent a number of years in Research and Development to bring you a market leading Iso-NPG brush gelcoat for external applications where long-term durability is critical.

Technical Performance Benefits


- Superior Weathering Performance both accelerated weathering and 12-month natural Florida exposure reveal neglible colour change and excellent gloss retention.
- Low Styrene Content
- Superior Handling versus competitive Iso-NPG gelcoats
- Superb Water Resistance
- High Resistance to Osmotic Blistering proven in a rigorous 12-month test when used as part of a marine grade system.
- Low Porosity Finish
- Lloyd's Approved
- Easy to Repair

MARKETS

- Marine
- Transport
- Building
- Industrial
- Applications where exterior durability is critical

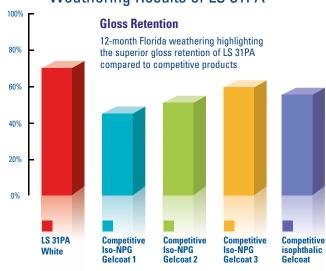
Weathering

The main factors contributing to weathering are solar radiation, temperature and water (moisture). To fully measure degradation in different environments, Scott Bader implements a range of weathering tests that includes two forms of natural weathering and two forms of accelerated tests. However, the accelerated weathering results are used only to rank weathering ability and the 12 months natural Florida test is the ultimate indicator.

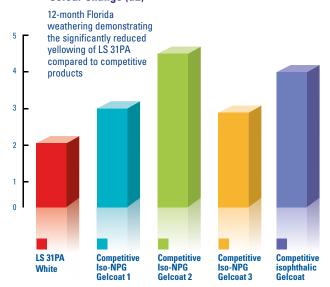
For natural Florida, Scott Bader uses the Atlas weathering group site in South Florida because of its subtropical climate. The test is carried out using open-backed panels that are 300mm long and 100mm wide. The panels are placed at 5° to the horizontal, in accordance with ASTM G7 "Recommended practice for atmospheric environmental exposures testing of non-metallic material".

To ensure results are consistent, colour change from weathering is measured in-house using the CIEIab colour model to measure any colour shift.

Specially designed test panels at the Atlas Weathering Services Group site in Florida, U.S.A.



Blistering


LS 31PA panels were subjected to water immersion at 40°C for 12 months and showed no sign of blistering and water pick-up was minimal. Scott Bader developed the test and has been using it reliably for over 30 years.

Liquid Properties					
Property	Unit	LS 31PA			
Viscosity @ 4500 s-1	poise	15			
Viscosity @ 0.6 s-1	poise	400			
Specific Gravity	-	1.1			
Geltime @ 25 °C, 2%Catalyst M	minutes	8			
Flash Point	°C	28			

Weathering Results of LS 31PA

Colour Change (dE)

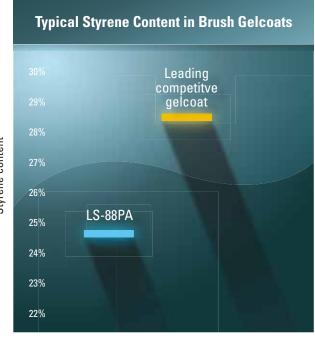
Mechanical Properties					
Property	Unit	LS 31PA			
Tensile Elongation	%	2.1			
Tensile Strength	MPa	57			
Flexural Modulus	MPa	3222			
Barcol Hardness	-	41			
Water Absorption, 4 weeks @ 23°C	mg	64			
Heat Deflection Temperature (1.80 MPa)	°C	65			

Crystic® LS88PA Brush Gelcoat

Low Styrene - Lloyds Approved - The Next Generation Marine Grade

Scott Bader has been setting performance benchmarks in marine gelcoats for over 50 years and we have done it again. Trusted by leading boat builders, Scott Bader has now developed Crystic[®] LS 88PA - the next generation brush marine gelcoat, to Crystic[®] GC 65PA.

Crystic[®] LS-88PA retains all the benefits of Crystic[®] GC 65PA, such as excellent handling properties, proven osmotic blistering resistance and reliable product quality, but with two major improvements:


- Significantly improved weathering performance
- A much lower styrene content both in the product and while curing

Crystic[®] LS-88PA offers moulders the following key benefits:

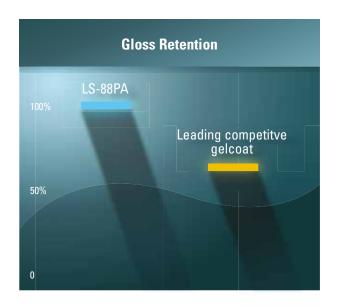
- Excellent marine weathering performance
- Reduced styrene emissions in use
- Exceptional handling
- Lloyds Approval

Our 'Gelcoat Development Team' has skilfully designed Crystic[®] LS-88PA to give outstanding performance, while still caring for the environment. All our gelcoats come with the proven, quality guarantees associated with Scott Bader, plus a technical support service you can rely on to help your business to be more successful.

Specially designed test panels at the Atlas Weathering Services Group site in Florida, U.S.A.

Scott Bader's rigorous development programme ensures that all new gelcoats are tested under the most extreme conditions, including external weathering using EMMAQA® in the Arizona desert and 12 months continuous exposure in Florida.




Extreme natural exposure conditions accelerate product weathering, two to three times faster than normal locations.

Under these intense conditions, Crystic LS-88PA displays exceptional weathering characteristics, exhibiting 100% gloss retention and virtually no colour change at the end of the test period.

Mechanical data in cured state

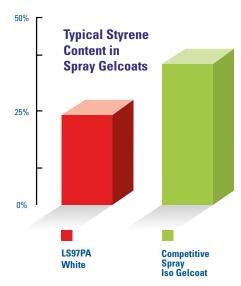
Product	LS-88PA	Leading competitive gelcoat
Tensile Elongation	2.5	3
Tensile Strength	68	75
Tensile Modulus	4060	3500
Barcol Hardness	45	42
Water Abs 24hrs @ 23°C	17	18
HDT (1.80MPa)	76	75

Physical data for Crystic LS-88PA in liquid state

Product	LS-88PA
Viscosity @ 4500s-1	12
Viscosity @ 0.6s-1	440
Specific Gravity	1.26
Geltime 2%M @ 25°C	8

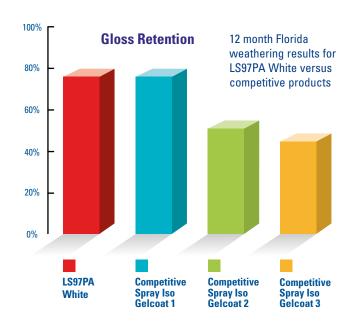
Crystic® LS97PA Spray Gelcoat

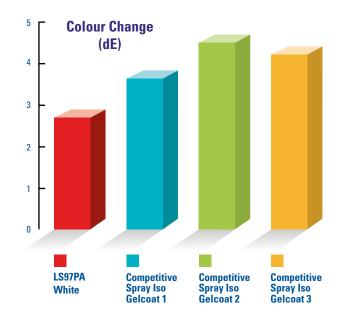
Scott Bader has developed an exceptional new thixotropic pre-accelerated isophthalic spray gelcoat in LS97PA. It has been designed to offer excellent performance in marine and other high performance gelcoat applications, offering superb handling properties and proven osmotic blistering resistance.


Crystic[®] LS97PA Key Benefits

- Excellent weathering performance
- Low styrene content
- Exceptional handling
- Low porosity finish
- Lloyds Approval

The Scott Bader gelcoat development team has skilfully designed Crystic LS97PA to give outstanding performance. Like all of our gelcoats, it comes with the proven quality guarantees associated with Scott Bader, plus a technical support service you can rely to help your business be successful.


Scott Bader's rigorous development programme ensures that all new gelcoats are tested under the most extreme conditions, including 12 months south facing exposure in Florida. Under these intense conditions, Crystic LS97PA displays excellent weathering characteristics, making it an ideal choice for demanding exterior applications.



Specially designed test panels at the Atlas Weathering Services Group site in Florida, U.S.A.

Extreme natural exposure conditions accelerate product weathering, two to three times faster than normal locations.

Physical Data for Crystic LS97PA in liquid state						
Property	Unit	LS97PA				
Viscosity @ 4500 s-1	poise	2.5				
Viscosity @ 0.6 s-1	poise	270				
Specific gravity	-	1.2				
Geltime (@25 °C, 2 % Butanox M50°)	minutes	5				
Flash Point	°C	26				

[®] Registered trademark of Akzo Nobel

Mechanical Data Typical values for Crystic LS97PA base resin*					
Property	Unit	LS97PA base			
Tensile elongation	%	4.7			
Tensile strength	MPa	74			
Flexural modulus	MPa	2800			
Barcol hardness	-	36			
Water absorption, 4 weeks @ 23 °C	mg	90			
Heat Deflection Temperature (1.80 MPa)	۰C	63			

^{*} postcured for 24 hours at 50 °C in accordance with BS EN ISO 12215-1: 2000

Epoxy Bonding Polyester Gelcoats Designed to Bond to Epoxy Resin Systems

"

Customer Experiences

We have been using Crystic GC 252PA for a number of years to manufacture racing sailboats as it is the only polyester gelcoat on the market that bonds to an epoxy resin. It's been used on many boats without any adhesion problems in tough conditions. We can de-mould very quickly so have cut down dramatically on processing time. It's much easier to apply than epoxy gelcoats and repairs can be done in a fraction of the time. We are very happy to recommend this product.

Jamie Stewart - Synthesize Yachts & Design

Crystic GC 252PA is extensively used by Premier Composites with an epoxy resin system, as it is extremely compatible. The main application is for invalid ramps within the transport sector. It is Premier's preferred gelcoat because it is easy to apply, has rapid cure and is well suited to our production processes. We have been using it for over 5 years now, and are happy to have a reliable, cost effective product that does not suffer from batch to batch variation.

Richard Wild - Premier Composites

Crystic® Epoxy Bonding Gelcoats

Product Range

GC 253PA

GC 255PA

Crystic

A unique range of polyester gelcoats with exceptional adhesion to epoxy substrates allowing them to be used instead of an epoxy gelcoat. These gelcoats have been used successfully by moulders who find the product range offers excellent performance in demanding epoxy applications whilst retaining the ease of use of polyesters. This means customers enjoy huge savings on de-mould time and repairs over epoxy gelcoats, in addition to paying a lower unit price.

Markets

- Wind energy*
- Marine*
- Building*
- Industrial*
- Transport*

* Not for use in applications where parts are permanently immersed in water. Also not recommended for epoxy pre-pregs. For more information please contact the Scott Bader technical service department.

Viscosit ^{IR}	oisel *	_{Specific} Gr	avity Hardness	Bacoll	c	Tensile N	tion Broad	ž,
Viscosit,	Geltime*	Specific	Hardness	HITIOCIX	Tensile.	Tensile.	tlougation,	Tolo

roudot mang									•
Crystic GC 251PA	Designed for brush application, includes a styrene suppressant to give exceptionally low styrene emission in use	Thix	9	1.1	44	68	66	4.0	2.1
Crystic GC 252PA	Standard grade designed for brush application	Thix	9	1.1	51	71	65	4.3	2.2
Cryetic	Standard grade designed for	Thiv	a	1.1	42	76	67	3 Q	2.2

Thix

8

1.4

52

78

57

5.4

1.7

Note 1: Cure schedule for mechanical data is 24 hours at 20°C, 3 hours at 80°C

systems

Note 2: +Cure schedule for HDT is 24 hours at 20°C, 5 hours at 80°C, 3 hours at 120°C

spray application

Note 3: *Cure schedule for geltime is 2% Butanox® M50 at 25°C. Butanox is a registered trademark of Akzo Nobel.

Fire retardant brush gelcoat

for use with epoxy laminating

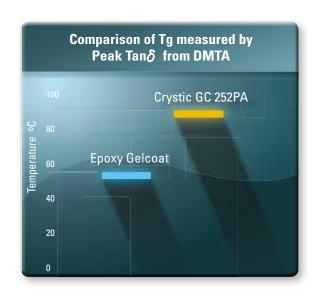
Why Choose Crystic® Epoxy Bonding Polyester Gelcoats Instead of Epoxy Gelcoat?

Ease of Use and Time/Cost Savings

- No back surface preparation necessary to achieve exceptional adhesion.
- No tiecoat required.
- Polyester gelcoats can be backed-up rapidly meaning de-mould times are significantly shorter resulting in huge productivity gains.
- Polyester gelcoat repairs are quicker and easier saving considerable time and money.
- Exceptionally easy handling simply add 2%MEKP catalyst and spray or brush apply.
- Sag resistant at recommended thickness of 0.4mm 0.8mm

Unique Product Benefits

- Significantly better UV resistance natural Florida 12-month weathering testing has shown excellent gloss retention and low colour change.
- Cures at ambient temperature heated moulds not required, although cure at 30 - 35oC will reduce back up delay.
- Supplied in any RAL or colour-matched colour.
- Optimum overcoating (back-up time) is 2 hours maximum is 24 hours.
- High Tg demonstrates ability to withstand higher operating temperatures.
- Robust, reliable bond With both epoxy laminating and infusion systems and a number of wet lay epoxy systems. Not recommended for epoxy pre-pregs


Operating Performance

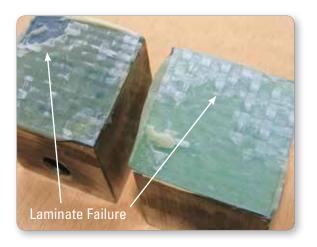
The higher Tg demonstrated by Crystic GC 252PA means it can withstand higher operating temperatures than the epoxy gelcoat.

Note 1: GC 252PA curing schedule of 16 hours at 40°C Note 2: Epoxy Gelcoat curing schedule of 28 days at 21°C

Mechanical Performance

When Crystic Epoxy Bonding Gelcoats are used for the production of a typical laminate, the finished structure retains the excellent mechanical properties associated with epoxy systems. Values are similar across the Crystic Epoxy Bonding Gelcoat range.

	Tensile Strain to Failure Flexural Pro				Flexural Properties	
Gelcoat	Delay Time	First GC Crack %	Strain To Laminate Failure %	Flexural Strength (MPa)	Flexural Modulus (MPa)	GC Strain To Failure %
Crystic GC 252PA	2 hours	1.6	6.5	152	6060	2.7
Crystic GC 252PA	24 hours	2.2	6.7	159	6365	2.6
Ероху	6 hours	2.0	7.1	109	5340	2.3

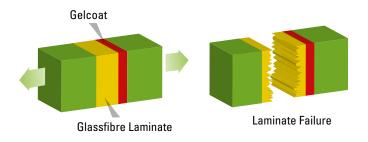

Adhesion Testing

Rigorous testing for adhesion to a number of different epoxy backing systems has been carried out. The results match a complete epoxy system. Similar results are seen across the Crystic Epoxy Bonding Gelcoat range.

Gelcoat	Back Up Delay Time	Z-direction Strength (MPa)
Crystic GC 252PA	2 hours	19.7
Crystic GC 252PA	24 hours	19.4
Ероху	6 hours	19.9

Note 1: Values for Crystic GC 252PA used as an example. Other gelcoats in this range show similar properties.

Note 2: Results based on laminates produced with liquid epoxy backing system cured for 16 hours at 50°C .


Result of GC 252PA adhesion test showing that failure is internal within the laminate $\,$

If 251PA, 252PA, 253PA or 255PA is used as a gelcoat with polyester laminating systems, then adhesion failure is likely to occur. Similarly, if the product is "double-gelled", then this is also likely to lead to adhesion failure. For these reasons, neither of these procedures is recommended.

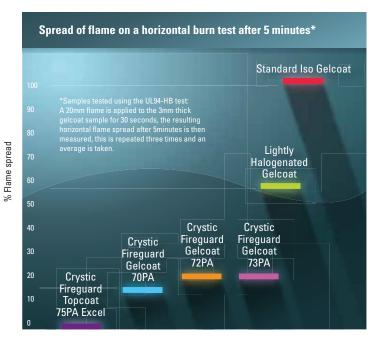
It is recommended that customers test the gelcoat before use under their own conditions of application to ensure the required surface finish and adhesion is achieved.

Z-Direction Testing

The Z-Direction test completed on Crystic GC 252PA showed laminate failure, see image above. This proves that Crystic GC 252PA bonds effectively to epoxy substrates as the gelcoat adhesion to the epoxy laminate did not fail. Same laminate failure mode is achieved across the Crystic Epoxy Bonding Gelcoat range.

Crystic® Fireguard Range

New Technology Fire Retardant Gelcoats and Topcoats Protecting Composites from Fire



Unsaturated polyester resins used to make Glass Reinforced Plastic (GRP) are organic and like all organic compounds they will burn. Certain applications such as rail, marine, land transportation and building need systems that delay burning long enough for effective evacuation. In some areas, there is an additional focus on low levels of smoke and toxic fume emission during burning. The need for fire retardant composites is specified by the relevant national and European fire standards.

Crystic Fireguard Gelcoat 70PA	New Technology Fire Retardant, Halogen Free Low Smoke and Low Surface Spread of Flame Spray Gelcoat for the Most Stringent Fire Approvals
Crystic Fireguard Gelcoat 72PA	New Technology Fire Retardant Halogen Free Low Surface Spread of Flame Spray Gelcoat
Crystic Fireguard Gelcoat 73PA	New Technology Fire Retardant Halogen Free Low Surface Spread of Flame Brush Gelcoat
Crystic Fireguard Topcoat 75PA Excel	New Technology Intumescent Fire Retardant Topcoat, Available in Both Spray and Brush Grades

TECHNICAL PERFORMANCE BENEFITS OF CRYSTIC FIREGUARD RANGE:

- High level of fire retardancy lower surface spread of flame
- Superior handling
- Low porosity finish
- Easy to repair
- Antimony Free
- 75PA Excel is available in a limited range of colours please ask for details. 70PA, 72PA and 73PA are available in all RAL colours

APPROVALS

Crystic Fireguard Gelcoat 70PA Firestarr CEN TS 45545-2 HL2 with Crestapol 1212

Crystic Fireguard Gelcoat 72PA BS 476 Part 7, Class 1 with 1355PA, DIN5510-2 S4, SR2, ST2 with Cresatpol 1212

M1 F1 rating with Crestapol 1212

Crystic Fireguard Gelcoat 73PA BS 476 Part 7, Class 2 with 2.3700PA modified general purpose resin

Crystic Fireguard Topcoat 75PA Excel BS 476 Part 7, Class 1 BS476 part 6, Class 0.

M1 F1 rating with Crestapol 1212

LOW SMOKE PERFORMANCE OF CRYSTIC FIREGUARD GELCOAT 70PA

- Crystic Fireguard Gelcoat 70PA with Crestapol 1212 produces less than half the amount of smoke compared to a standard fire retardant BS476 Part 7. Class 1 laminate*
- Crystic Fireguard Gelcoat 70PA with Crestapol 1212 has a 3 times lower optical density value (this measure the thickness of smoke) compared to a standard fire retardant laminate which achieves BS476 Part 7, Class 1*
- * When tested to ISO 5659-2

MARKETS

- RAIL Cab Fronts, Nose Cones, Exterior and Interior Panels, Seat Shells and Tables
- LAND TRANSPORTATION Buses, Coaches and Trucks
- MARINE Engine Rooms
- BUILDING AND CONSTRUCTION Doors, Roofs, Exterior and Interior Cladding

Crystic Fireguard Topcoat 75PA Excel External Burn Test

The fire in the box after 4 minutes clearly showing the protective properties of Crystic Fireguard Topcoat 75PA Excel on the left hand side

Typical properties of Crystic Fireguard Gelcoat 70PA	Liquid Gelcoat	
Property		Liquid
Appearance		Opaque, coloured
Viscosity, 25°C		Thixotropic
Specific Gravity at 25°C		1.30
Stability in the Dark @ 20°C	months	3
Geltime 25°C using 2% Butanox M50 (or other equivalent catalyst)	minutes	12

Typical properties of Crystic Fireguard 75PA Excel (B)	Liquid Topcoat	
Property		Liquid
Appearance		Opaque, coloured
Viscosity, 25°C		Thixotropic
Liquid Specific Gravity at 25°C		1.35
Volatile Content	%	20
Stability in the Dark @ 20°C	months	2
Geltime @ 25°C using 2% Butanox M50 (or other equivalent catalyst)	minutes	10
Barcol Hardness* (model GYZJ 934-1)		40
Solid Specific Gravity at @ 25°C*		1.46

 $^{^{*}}$ Curing Schedule - 24 hrs at 20 0 C, 8 hrs at 60 0 C

Typical properties of Crystic Fireguard 75PA Excel (S)	Liquid Topcoat	
Property		Liquid
Appearance		Opaque, coloured
Viscosity, 25°C		Thixotropic
Liquid Specific Gravity at 25°C		1.35
Volatile Content	%	27
Stability in the Dark @ 20°C	months	2
Geltime @ 25°C using 2% Butanox M50 (or other equivalent catalyst)	minutes	10
Barcol Hardness** (model GYZJ 934-1)		40
Solid Specific Gravity at @ 25°C**		1.46

^{**} Fully cured (unfilled casting)

Typical properties of Crystic Fireguard Gelcoat 72PA and 73PA	Liquid Gelcoat	
Property		Liquid
Appearance		Opaque, coloured
Viscosity, 25°C		Thixotropic
Specific Gravity at 25°C		1.40
Stability in the Dark @ 20°C	months	3
Geltime 25°C using 2% Butanox M50 (or other equivalent catalyst)	minutes	8

Fire F	Retar	dant	EUR	OPEAN	GE	RMAN	FRE	NCH	UK		US	GLOBAL		
Resir	Resins and		sins and		*	***							* * * * * * * * * * * * * * * * * * * *	Es.
Resir	Svs.	tems	*,	***										
moon	. 0,0		TRAIN	BUILDING	TRAIN	BUILDING	FIRE	SMOKE						
HALOGEN.	SPECIFIC GRAVITY	PRODUCTS	EN 4 5545	EN 13501.1	DIN 5510	DIN 4102	NF P 92-501	NF F 16 101	BS 476 part 6&7	UL 94	ASTM	IM0		
no		1212 + ATH 200	HL2											
no		1212 + ATH 170					M1	F0						
no		1212 + ATH 100									E162 E662			
no		1212 + ATH 100 + 72PA			S4 SR2 ST2									
no		1212 + ATH 170 + 70PA	HL2				M1	F1			E162 E662 BSS7 239			
yes	1.37	26026 PA								V0				
yes	1.37	26026 + 72PA					M2	F2						
yes	1.54	5046 + 72PA					M1	F2						
yes	1.54	356PA + 65PA					M1	F3	Class 1					
yes	1.54	356PA + 97PA							Class 1					
yes	1.12	2.406PA + TC 75PA					M1							
no	1.12	2-3700PA + 72PA					M3		Class 2					
no	1.12	2-3700PA + 73PA					М3		Class 2					
yes	1.12	2-8500PA + 75PA Excell							Class 1					
yes	1.12	2-8500PA + 75PA S					M1							
no	1.6	1131T + 967 FR			S4 SR2 ST2									
no	1.6	1131T + 72PA					M2	F1			E162 E662 BSS7 239			
no		343A + ATH										A653 MCS61(67)		
no		344A + ATH										A653 MCS61(67)		
yes	1.4	1355PA + 72PA							Class 1					
yes	1.4	1355PA + 65PA							Class 2	V0				
yes	1.4	PD9359							Class 1					

Crystic® Gelcoat 967SMK Excel

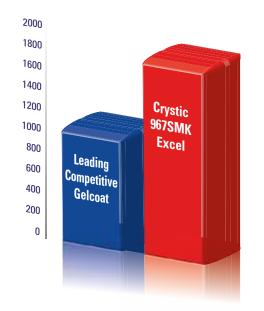
Scott Bader has spent significant time and money in Research and Development to bring you a market leading Iso-NPG spray gelcoat for sanitaryware applications designed to offer superior technical performance.

Technical Performance Benefits

- This new formulation eliminates the industry problem of microporosity usually exposed after abrasion of the gelcoat.
- 967SMK Excel has improved flow without sagging to prevent costly repairs.
- Initial gloss is noticeably better than competitive sanitaryware gelcoats which means less polishing is required and an enhanced surface finish is achieved.
- At least 40% increase in thermal resistance compared to competitive sanitary gelcoats proven in a severe thermal shock test.
- Quick cure faster production cycle times.
- Excellent chemical resistance.
- Passes sanitaryware standard test NF XPD12-210 for good stain resistance.

Leading competitive gelcoat after 1200 thermal cycles

Crystic Gelcoat 967SMK Excel after 2000 thermal Cycles


Thermal Shock Resistance

In a rigorous thermal shock resistance test, Crystic 967SMK Excel completed 2000 thermal cycles without any evidence of surface degradation. A leading competitive gelcoat revealed a damaged surface finish after 1200 thermal cycles.

Steps Within One Thermal Cycle in Test

90 seconds flow* with hot water at 75°C 30 seconds dwell time 90 seconds flow* with cold water at 15°C 30 seconds dwell time

*Flow rate : 4 litres/minute

The graph demonstrates 967SMK Excel provides significantly better thermal shock resistance than a leading competitor gelcoat.

Product Range

Crystic Gelcoat 967SMK Excel

for airless spray equipment applications

Crystic Gelcoat 967SMK Excel

for gravity gun applications

Crystic Microban Gelcoat 967SMK Excel

for applications requiring antibacterial protection against common bacteria and fungus

Crystic Gelcoat 997SMK

for applications requiring a water clear chemical resistant gelcoat

Applications:

The specially designed formulation makes Crystic Gelcoat 967SMK Excel an ideal choice for demanding sanitaryware applications where surface quality and long-term performance is essential.

- Bathroom sinks
- Baths
- Shower trays
- Shower cabins

Sanitaryware Markets

- Domestic and commercial properties
- Hospitals
- Hotels
- Public Buildings
- Luxury Yachts
- Cruise liners

A leading European sink
manufacturer has chosen 967SMK
Excel as it has outstanding
thermal shock resistance
compared to competitive products
and has zero microporosity after
abrasion of the gelcoat.

Mechanical Data for Gelcoat 967SMK Excel in Cured State

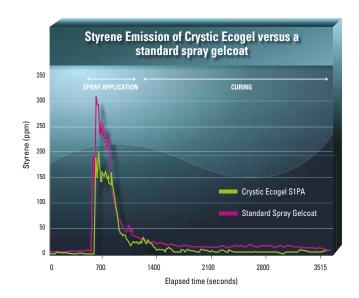
Product	967SMK Excel	Leading Competitive Gelcoat
Tensile Elongation	3	2
Tensile Strength	70	64
Tensile Modulus	3400	3800
Barcol Hardness	45	45
HDT (1.80MPa)	90	83

Physical Data for Gelcoat 967SMK Excel in Liquid State

Product	967SMK Excel
Viscosity @ 2.5rpm (dPas)	300
Thixotropic Index	6
Specific Gravity	1.18
Geltime 2% Catalyst M @ 25°C (mins)	8

Crystic[®] Ecogel Family of Low Styrene Gelcoats

Ultra-low styrene content spray gelcoats, designed for use in a variety of end applications



Crystic® Ecogel S1PA

16

STYRENE CONTENT

Market leading, ultra-low styrene gelcoat, suitable for wind energy and industrial applications.

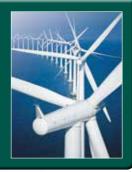
Superior weathering low VOC Isophthalic NPG marine gelcoat, designed for the production of high quality marine parts. Available in both white and off-white colours.

	FEATURES	BENEFITS
i	Iso NPG base resin	Excellent water / blistering resistance
•	High elongation	Good impact resistance
١	Excellent weathering performance	Reduced yellowing and colour change
	Easy to apply	Excellent surface aspect
ı	Low styrene content	Better working conditions for workers, and less styrene emissions in the work place
	Low VOC emission	Low impact on environment

All Ecogel products contain zero acetone content and can be used with Butanox M50.

Crystic[®] Ecogel Ultra-Low Styrene Content Spray Gelcoat

Designed for use in general moulding, transportation, wind energy and building applications

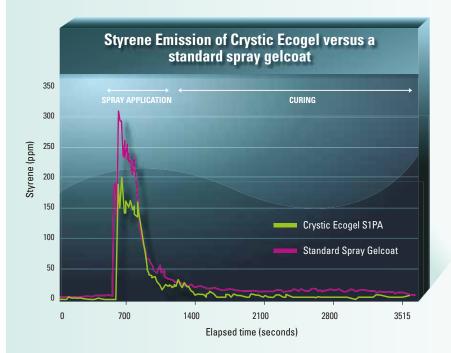


LM Wind Power Case Study

LM Wind Power Blades has been a market leader in the manufacture and supply of wind turbine blades for over three decades now. This has been achieved over the years through an unwavering commitment to continuous improvement, quality, cost, research, product development and excellent customer service.

LM Wind Power now uses Scott Bader's ultra-low styrene gelcoat products in its plants globally, and has seen a major reduction (more than 50%) in styrene emissions during spray gelcoat application, without any loss of performance and using the same standard spray equipment and catalysts as with conventional gelcoats. The use of Scott Bader's ultra-low styrene gelcoats has enabled LM Wind Power to greatly improve the environment for our workers and meet our own demanding in-house HSE standards.

Dan Lindvang, Senior Manager, Global Equipment Engineering


Independent laboratory tests confirm that

Crystic Ecogel S1PA

can cut total styrene emissions by over

55%

compared to using a standard technology polyester spray gelcoat when sprayed using extraction equipment with an air flow rate of 5000m³/hr

Tests show Crystic Ecogel S1PA has a much lower VOC emission for both the dynamic phase (airless spray) and static phase (gelation) than a standard spray gelcoat

- Good weathering resistance
- Good interlaminar adhesion with standard polyester and vinylester resins
- Noticeably lower styrene smell emitted from the gelcoat
- Good gloss
- The gelcoat film will be ready for laminating approximately 1 hour after spray application

Guidelines for use

Spray apply Crystic Ecogel S1PA using same technique as a standard gelcoat

Cures with a standard MEKP catalyst

Apply wet film thickness of 0.5-0.6mm

Ensure workshop temperatures are above 18°C

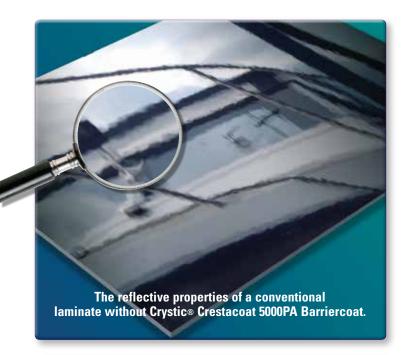
The 1st layer of laminate should be applied on the same day as the gelcoat

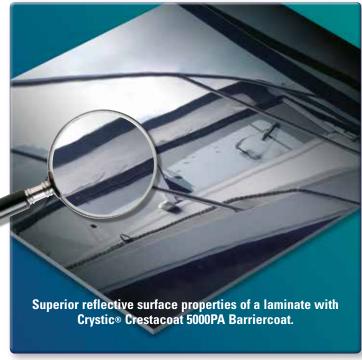
LAMPLAS Polymer Engineering Case Study

LAMPLAS Polymer Engineering are one of the largest composite general moulders in the UK and supply parts to many industries. Crystic Ecogel is very low in odour and does cut styrene emissions significantly whilst still exhibiting a glossy, low porosity surface finish on the finished part. Our laminators are able to spray the gelcoat following the same technique used with a conventional spray gelcoat and use our standard catalyst. I am really pleased that Scott Bader are innovating with new technology like this to help us comply with health and safety regulations.

Keith Siddle, Operations Director

Properties for Crystic Ecogel S1PA	Typical Result
Viscosity, 25°C 0.6s ⁻¹	300 poise
Viscosity, 25°C 4500s ⁻¹	2.6 poise
Specific Gravity at 25 °C	1.25
Stability at 20°C	3 months
Styrene Content (wt)	16 %
Geltime 20 °C 1.5 % Butanox M50 (or equivalent catalyst)	15 - 20 mins


Mechanical properties	Value
Barcol Hardness (Model 934-1)	48
Heat Deflection Temperature*	95 °C
Water Absorption 24 hours at 23°C	18 mg
Tensile Modulus	4 GPa
Elongation at Break	2.4 %
Tensile strength	48 MPa



A new technology barriercoat designed to significantly improve gelcoat surface aesthetics, creating a glassy, high lustre, ultra smooth finish

Use it for making superior surface finish parts -

Fibre pattern and orange peel can often be seen on a gelcoat surface causing an undesirable gelcoat finish; darker colours, complex shapes and infused parts are especially prone to these defects. These common gelcoat surface defects can be dramatically reduced by applying a 1mm thick layer of Crystic® Crestacoat 5000PA behind the gelcoat.

Superior 'Matched System' Performance -

Crystic® Crestacoat 5000PA has been matched with Crystic® VE679PA skincoat to give the best possible surface finish and the added advantage of outstanding osmotic blistering resistance, proven in a rigorous 12-month test. This matched system can be used with confidence for marine applications or for parts used in other demanding environments, where surface aesthetics are critical.

Unique Formulation & Performance -

Crystic® Crestacoat 5000PA is based on innovative urethane acrylate technology unique to Scott Bader. The unique formulation has been proved technically to outperform both vinylester and polyester barriercoats. Use it with the knowledge that it comes with the proven quality guarantees associated with Scott Bader.

Markets

- Marine
- Land Transport
- Building
- Industrial
- Applications that require a superior gelcoat surface finish

Crystic® Crestacoat 5000PA

Superior Surface Finish -

Wave-scan Distinctiveness of Image (DOI) measurement (appearance standard in the automotive industry) proves Crystic® Crestacoat 5000PA is significantly better than both polyester and vinylester barriercoats in achieving a glassy, high definition, deep lustre gelcoat surface finish. The results achieved on the laminate built using Crystic® Crestacoat 5000PA would even significantly outperform many automotive spray painted parts.

• Interlaminar Adhesion -

Its tough, strong, flexible urethane acrylate resin backbone, as used in Scott Bader's Crystic Crestomer® structural adhesive range of products, ensures excellent adhesive properties within the laminate.

Use less than competitive materials -

Only 1mm thickness is required to achieve all the product advantages.

Easy to apply and use –

It can be sprayed or applied by brush and is very easy to use.

Lightweight Formulation –

This means only 600g/m² is required to achieve the recommended 1mm thickness.

Laminate Flexibility –

Improved by using Crystic® Crestacoat 5000PA which helps prevent gelcoat cracking.

FEATURES & BENEFITS

Low Exotherm –

This means that when applied at a thickness of 1mm, Crystic® Crestacoat 5000PA can be used with confidence on very large structures.

Matched System –

Crystic® Crestacoat 5000PA has been matched for use with Crystic® VE679PA skincoat resulting in a system proven to give the best surface finish.

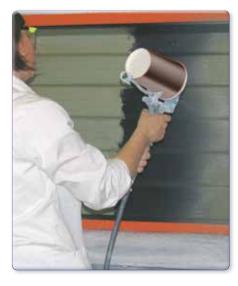
Radius compound –

It is an ideal product for making superior quality complex parts with sharp corners, as its flexible properties reduce air voids, cracking and pre-release in moulded parts where there is sharp radius in the design.

Blistering Resistance -

A rigorous 12-month test has proven that Crystic® Crestacoat 5000PA can be used with confidence in a marine environment behind a Crystic high performance marine grade gelcoat with Crystic VE679PA skincoat.

Long-term surface quality –


Laminates constructed using Crystic®
Crestacoat 5000PA maintained a superior
surface quality after being submerged in
water at 40°C for 12 months, proving that it
helps to maintain a high quality surface finish
in the long term.

The paste is firstly catalysed and mixed thoroughly.

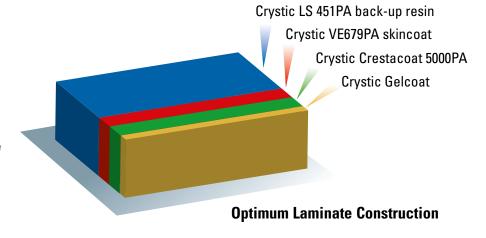
The Crystic Crestacoat 5000PA can then be applied by brush for smaller areas.

Or by spray to cover larger areas quickly and evenly.

Wave-scan Distinctiveness of Image (DOI) measurement Gelcoat, vinylester barrier, VE679PA skin Gelcoat, polyester barrier, VE679PA skin Gelcoat, Crestacoat Gelcoat, Crestacoat 5000PA,competitor vinylester skin 5000PA, VE679PA skin Gelcoat, no barrier, VE679PA skin 12 10 Wavescan Surface Roughness Results 4 2 30mm defect wavelength

Short and long wave roughness

The quality of a surface differs depending if viewed close-up or far away. Hence surface waviness, or 'orange-peel', has historically been characterised using two key criteria, namely the short and long wave roughness of a surface.


Short wave roughness is observable at close ranges, around 40cm, affected by the smoothness of reflected edges.

Long wave roughness is best observed at around 3m distance and is affected by larger defects around the 1-10mm wavelength; at this distance, a high quality surface should almost look as if it is wet. The wave-scan graph shows data comparing combinations of different gelcoats and barriercoats. Crystic Crestacoat 5000PA backed with Crystic VE679PA shows surface aesthetics superior to all other combinations. These results would even significantly outperform many spray painted parts in the automotive industry.

Crystic Crestacoat 5000PA is designed to be used behind a standard gelcoat and should be applied when the gelcoat has reached sufficient cure for normal lamination to take place. It can be brushed or sprayed to a thickness of 1mm. It is recommended that the barrier gel layer is as even as possible.

<0.1mm

As a guide, approximately 600g/m² of Crystic Crestacoat 5000PA will give the required thickness when evenly applied.

Typical Properties					
Property	Unit	Liquid Crystic Crestacoat 5000PA			
Appearance		Light blue paste			
Viscosity @ 25°C		Thixotropic			
Specific gravity @ 25 °C		0.6			
Stability in the dark @ 20 °C	months	3			
Geltime (@ 25 °C using 2% Catalyst M / Butanox M50®)	minutes	25			

*	Curina	schedule -	24	hours	@	20°C	3 hours	@ 80°C	

^{**} Curing schedule – 24 hours @ 20°C, 5 hours @ 80°C, 3 hours @ 120°C

Typical Properties							
Property	Unit	Fully cured* Crystic Crestacoat 5000PA					
Shore Hardness		70					
Deflection temperature under load ** (1.80MPa)	°C	58					
Tensile Modulus	MPa	1050					
Tensile Strength	MPa	17					
Elongation at break @ 20°C	%	3.5					

Packaging

Crystic Crestacoat 5000PA is supplied in 15kg containers.

Scott Bader Group Companies

HEAD OFFICE

Scott Bader Company Limited

Wollaston England

Tel: +44 1933 663100 Fax: +44 1933 666139

email: enquiries@scottbader.com

Scott Bader France

Amiens France

Tel: +33 3 22 66 27 89 Fax: +33 3 22 66 27 80

email: info_distribution@scottbader.fr

Scott Bader Spain

Barcelona Spain

Tel: +34 93 553 1162 Fax: +34 93 553 1163 email: diazs@scottbader.es

Scott Bader Germany

Weiden Germany

Tel: +49 961 401 84474 Fax: +49 961 401 84476

email: composites@scottbader.de

Scott Bader Ireland

Dublin Ireland

Tel: +353 1801 5656 Fax: +353 1801 5657

email: composites@scottbader.ie

Scott Bader Scandinavia AB

Falkenberg Sweden

Tel: +46 346 10100 Fax: +46 346 59226

email: composites@scottbader.se

Scott Bader Eastern Europe s.r.o

Mimoň II Czech Republic

Tel: +420 (0) 487 863 880 Fax: +420 (0) 485 111 254 email: miro@sbee.cz

Scott Bader Croatia

Zagreb Croatia

Tel: +385 1 240 6440 Fax: +385 1 240 4573 email: info@scottbader.hr

Scott Bader Inc.

Stow, OH USA

Tel: +1 330 920 4410 Fax: +1 330 920 4415 email: info@scottbader.com

Scott Bader South Africa

Hammarsdale South Africa

Tel: +27 31 736 8500 Fax: +27 31 736 8511

email: composites@scottbader.co.za

Scott Bader Middle East Limited

Dubai

United Arab Emirates Tel: +971 481 50222 Fax: +971 488 35319 email: info@scottbader.ae

Abahsain Scott Bader FZ CO

Jebel Ali

United Arab Emirates Tel: +971 481 50 222 email: info@scottbader.ae

Scott Bader Asia Pacific

Shanghai China

Tel: +86 (21) 5298 7778 Fax: +86 (21) 5298 8889 email: info@scottbader.cn

Satyen Scott Bader Pvt. Ltd

Mumbai India

Tel: +91 22 4220 1555 Fax: +91 22 2491 1262

email: info@satyenpolymers.com

NovaScott Especialidades Químicas Ltda

Civit II, Serra, ES 29165-973

Brazil

Tel: +55 27 3298-1100 email: info@novascott.com.br

